

Vaccines Investor Event

Part 1 Growing current business

December 1st, 2021

Forward looking statements

This presentation contains forward-looking statements as defined in the Private Securities Litigation Reform Act of 1995, as amended. Forwardlooking statements are statements that are not historical facts. These statements include projections and estimates and their underlying assumptions, statements regarding plans, objectives, intentions and expectations with respect to future financial results, events, operations, services, product development and potential, and statements regarding future performance. Forward-looking statements are generally identified by the words "expects", "anticipates", "believes", "intends", "estimates", "plans" and similar expressions. Although Sanofi's management believes that the expectations reflected in such forward-looking statements are reasonable, investors are cautioned that forward-looking information and statements are subject to various risks and uncertainties, many of which are difficult to predict and generally beyond the control of Sanofi, that could cause actual results and developments to differ materially from those expressed in, or implied or projected by, the forward-looking information and statements. These risks and uncertainties include among other things, the uncertainties inherent in research and development, future clinical data and analysis, including post marketing, decisions by regulatory authorities, such as the FDA or the EMA, regarding whether and when to approve any drug, device or biological application that may be filed for any such product candidates as well as their decisions regarding labelling and other matters that could affect the availability or commercial potential of such product candidates, the fact that product candidates if approved may not be commercially successful, the future approval and commercial success of therapeutic alternatives, Sanofi's ability to benefit from external growth opportunities, to complete related transactions and/or obtain regulatory clearances, risks associated with intellectual property and any related pending or future litigation and the ultimate outcome of such litigation, trends in exchange rates and prevailing interest rates, volatile economic and market conditions, cost containment initiatives and subsequent changes thereto, and the impact that COVID-19 will have on us, our customers, suppliers, vendors, and other business partners, and the financial condition of any one of them, as well as on our employees and on the global economy as a whole. Any material effect of COVID-19 on any of the foregoing could also adversely impact us. This situation is changing rapidly and additional impacts may arise of which we are not currently aware and may exacerbate other previously identified risks. The risks and uncertainties also include the uncertainties discussed or identified in the public filings with the SEC and the AMF made by Sanofi, including those listed under "Risk Factors" and "Cautionary Statement Regarding Forward-Looking Statements" in Sanofi's annual report on Form 20-F for the year ended December 31, 2020. Other than as required by applicable law, Sanofi does not undertake any obligation to update or revise any forward-looking information or statements.

SANOFI 🌍

Vaccines Investor Event | Agenda

Ir	ntroduction	Paul Hudson	Chief Executive Officer
We	Play to Win	Thomas Triomphe Head of Vaccines GBU	
Growing	Winning in Influenza	Bill Averbeck	Head of Influenza Franchise
current business	All infant protection against RSV	Kimberly Tutwiler	Head of RSV Franchise
		Q&A session	
Building an innovative & diversified pipeline		Jean-François Toussaint	Head of Vaccines R&D
Leading with	Unlocking the potential of mRNA	Frank DeRosa	Head of Research for mRNA CoE
innovation	Broadening the pipeline to address unmet needs	Jean-François Toussaint Thomas Grenier	Head of Vaccines R&D Head of Franchises & Product Strategy
Conclusion		Thomas Triomphe	Head of Vaccines GBU
		Q&A session	

Introduction

Paul Hudson

Chief Executive Officer

Play to Win: Our six-year plan – ahead of schedule

Our key growth drivers are delivering

CMD: Capital Markets Day 2019

(1) Based on Q3 results (2) Nirsevimab MELODY, Libtayo[®] 1LNSCLC CT, Libtayo[®] 2L Cervical, Dupixent[®] AD 6m-5y, Dupixent[®] CSU (Part A), Dupixent[®] PN (Part A), Dupixent[®] EoE (Part B)

Constant progress in ESG

Our four-pillar strategy

Affordable access

Healthy planet

Vulnerable communities

Sustainability scores: Sanofi vs. selected benchmark

Improving to 2nd highest score in DJSI

ESG: Environmental, Social and Governance DJSI: Dow Jones Sustainability Indices Source: 2021 DJSI ranking

COVID-19 recombinant vaccine program

Parent strain = D614, Beta strain = B.1.351

(1) Stage 1 cohort size reduced from 16k to 10k subjects due to higher COVID-19 prevalence caused by the Delta variant

Conclusion

SANOFI 🎝

We Play to Win in Vaccines

Thomas Triomphe

Head of Vaccines GBU

We Play to Win in Vaccines

Focus on growth

- Set to lead in differentiated Influenza
- Ready to launch nirsevimab to protect all infants
- Continuous growth in Meningitis and PPH & Boosters

Lead with innovation

- Building next-generation mRNA platform
- Breaking boundaries for vaccine-preventable diseases

Accelerate efficiency

- Fund mRNA and innovation through resource reallocation
- Improving the product mix

Reinvent how we work

- Evolutive Vaccines
 Facilities
- Embracing biotech speed and agility with TBio

SANOFI 🎝

What we heard from some of you

Addressing COVID-19 evolving needs

2021	2022/2023	2024+		
Sanofi Phase III efficacy read-out expected by end-of-year	Newly licensed vaccines to complement existing orders • Demand addressed by ~25bn ⁽¹⁾ COVID-19 vaccine doses released by mid-2022 and potential therapeutics	Sanofi offering thermostable booster vaccine, depending on market demand		
COVID-19 morbidity (illustrativ	ve purposes)			

Pandemic

Post-Pandemic

(1) IFPMA press release, October 19th 2021

Limited opportunity for Flu / COVID-19 combo as of now

Immune response⁽¹⁾ of Fluzone HD maintained when co-administered with COVID-19 vaccine

QIV-HD+mRNA-1273 / Post-dose QIV-HD only / Post-dose

Immunogenicity - GMT of influenza HA antibody response

SANOFI Combo: combination GMT: Geometric Mean Titer HA: Hemagglutinin QIV: Quadrivalent Influenza Vaccine. (1) Izikson et al. QHD00028 CDC ACIP presentation 2021

Key requirements for a Flu / COVID-19 combo vaccine

We have everything it takes to win

Best-in-class products

Unique formulation & combination capabilities

Technology best suited to disease, selected from multiple platforms

Ability to deliver at scale

Large-scale manufacturing & supply capabilities

Extensive RWE experience to demonstrate real-life efficacy

۱
1

Long history of working with key stakeholders to implement broad vaccination programs

Strong commercial network

RWE: Real world evidence

Confirming CMD guidance for 2025

SANOFI S Row: Rest of the world EU: Europe PPH: Polio Pertussis Hib combination vaccine (1) CAGR at CER (2020 FX rates), barring unforeseen events (2) Travel & Endemic

Sanofi addressable market to grow significantly

Creation of a first-of-its-kind mRNA Center of Excellence

Presenting 4 mRNA vaccine candidates today

SANOFI 🎝

Building an industry leading pipeline

RSV: Respiratory syncytial virus PCV: Pneumococcal conjugate vaccine HD: High-Dose EU 5: France, Germany, Italy, Spain, United Kingdom

(1) All age groups (2) Age groups 0-24 years old (3) Age groups 0-4 years old and above 65 years old (4) U.S.: 3.4m moderate-to-severe acne and 21m women aged 15-24yo - age group particularly at risk for Chlamydia; Ext-U.S.: 22m moderate-to-severe acne (EU 5 and China incl. in these figures); 561m women aged 15-24yo globally – age group particularly at risk for Chlamydia

Source: Population estimates, The World Bank

Ambition to more than double sales by end of decade

Launch nirsevimab & become the RSV leader

Enter large Pneumococcal vaccines market

Deliver new mRNA vaccine candidates

(1) Vs. 2018, risk adjusted, internal estimate; excluding Covid-19

Vaccines Investor Event | Agenda

Winning in Influenza

Bill Averbeck

Head of Influenza Franchise

Why we will win in flu

Pandemic mRNA platforms not ready for seasonal flu

Protection Beyond Flu	Demonstrated efficacy in hospitalization and infection reduction through high quality / consistent data – not just immunogenicity
Safety & tolerability	Excellent tolerability profile
Administration	Fully liquid formulation, pre-filled syringes Shelf life covering duration of flu season at refrigerator temperature (2-8°C)

Protection against flu infection is not enough

Total flu related healthcare costs in the U.S. estimated at \$11bn⁽¹⁾

(1) Direct costs: \$3.2 billion per year (hospitalization, emergency room visits, GP visits), indirect costs: \$8 billion per year (productivity loss from paid employment, lost productivity from premature mortality) Source: Putri WCWS, Muscatello, DJ, Stockwell MS et al. Vaccine 2018

Protection Beyond Flu is the new minimum standard

RCT: Randomized Controlled Trial (1) For subjects over the age of 3 years old

Fluzone High-Dose sets the bar for Protection Beyond Flu

Proven additional hospitalization reduction over SD, across 10 seasons & 34m patients⁽²⁾

SANOFI → HD: High-Dose SD: Standard dose HD-IIV3: High-Dose inactivated influenza trivalent vaccine SD-IIV: Standard dose inactivated influenza vaccine (1) Net et al., Vaccine; 2021 DOI: 10.1016/j.vaccine.2021.01.016 (2) rVE of HD-IIV3 compared to SD-IIV in adults aged ≥ 65 years, % (95% CI) Source: Lee J, Lam J, Shin T, et al. 27 Vaccine 2021

Immunogenicity alone is simply not enough

	Immunogenicity	ficacy again	st infection	Protection Beyond Flu
Fluzone High-Dose ⁽¹⁾		Demonstrated efficacy vs. S	d superior D (rVE: 24%)	Demonstrated consistent improved protection against multiple hospitalization endpoints vs. SD
Flublok ⁽²⁾		Demonstrated efficacy vs. S	d improved D (rVE: 30%)	Ongoing Phase IV trials
Fluad adjuvanted vaccine ⁽³⁾		Failed primar	y endpoint	Inconsistent observational studies
GSK adjuvanted vaccine ⁽⁴⁾		Failed primar	y endpoint	Not available
mRNA candidates	First trials ongoing	No trials curre	ently underway	

rVE: Relative Vaccine Efficacy SD: Standard dose (1) DiazGranados CA, Dunning AJ, Kimmel M, et al. N Engl J Med. 2014; Lee J, Lam J, Shin T, et al. Vaccine 2021 (2) Dunkle et al. N Engl J Med. 2017 (3) Beran J, Reynales H, Poder A, et al. The Lancet Infectious Diseases.2021 (4) McElhaney JE, Beran J, Devaster JM, et al. The Lancet Infectious Diseases. 2013; Ruiz-Palacios GM, Leroux-Roels G, Beran J, et al. Human Vaccines & Immunotherapeutics 2016

28

It takes Protection Beyond Flu to win

Fluzone HD share of U.S. 65+ years old flu market value, \$bn

Nearly 2 out of 3 vaccinated seniors received Fluzone HD in 2020

HD: High-Dose Source: Sanofi internal analysis

Current mRNA safety profile unfit for flu market

Adverse events in 65+ years old

HD: High-Dose

(1) Falsey A, et al. J Infect Dis. 2009 (2) Baden et al, N Engl J Med. 2020; Izikson et al. QHD00028 CDC ACIP presentation 2021 (3) Grade 3: a type of adverse event that interrupts usual activities of daily living, or significantly affects clinical status, or may require intensive therapeutic intervention (4) Izikson et al. QHD00028 CDC ACIP presentation 2021

Grade 3⁽³⁾ adverse events⁽⁴⁾

30

Pandemic mRNA platforms not ready for seasonal flu

	mRNA 1 st generation	
Protection Beyond Flu	Proven superior Protection Beyond Flu vs. SD	No trial currently running
Safety & tolerability	Well established	12.3x more Grade 3 systemic reactions vs. HD ⁽¹⁾
Administration	Fully liquid in pre-filled syringe; shelf life lasting all flu season at refrigerator temperature (2-8°C)	Frozen, multidose vials ⁽²⁾

For seasonal flu market 2nd generation mRNA platform required

SANOFI S HD: High-Dose SD: Standard dose (1) Izikson et al. QHD00028 CDC ACIP presentation 2021 (2) US CDC

Winning in the differentiated flu market

Setting a high bar with Fluzone HD and Flublok Building 2nd generation mRNA platform to deliver Next-Gen Flu vaccines

+

All infant protection against RSV

Kimberly Tutwiler

Head of RSV Franchise

All infants are at risk of Respiratory Syncytial Virus

High burden of RSV disease for all infants

Infant segment to represent 1/3 of total RSV market in 2030⁽³⁾

SANOFI 🎝

(1) Findings for U.S. healthy pre-term and full-term infants applied to 2020 global Birth cohort (<1yo); Sources: Pavilack et al. Infect Dis Ther 2018; Chawanpaiboon et al. Lancet Global Health 2019 (2) Findings for U.S. pre-term and full-term infants applied to global 2015 RSV hospitalizations; Sources: Feltes, T.F., et al. J Pediatr, 2003; IMpact, The IMpact-RSV Study Group. Pediatrics, 1998; Shi T, et al. Lancet. 2017 (3) Sanofi internal estimates

Nirsevimab is the only option for All Infant Protection

(1) Source: Nirsevimab Phase III MELODY study, primary endpoint: protection at day 151 (2) Sanofi's estimate; no published data on duration of protection for RSV Maternal Immunization Note: nirsevimab developed in collaboration with AstraZeneca Sources: Janet et al, Human Vaccines & Immunotherapeutic 2017; Esposito S et al. Frontiers in immunology 2021; Nirsevimab Phase IIb study; Nirsevimab Phase III MELODY study; Palivizumab prescribing information – range between Trial 1 and Trial 2

35

Three pivotal studies to enable universal RSV immunization

Study	Target population	Status
MELODY Pivotal Phase III vs. placebo n=2,990	Healthy full-term and late pre-term infants ≥ 35 wGA	Primary analysis & enrollment for full safety population completed
PHASE IIb n=1,453 vs. placebo	Healthy pre-term infants 29-35 wGA	Completed
MEDLEY Phase II/III vs. palivizumab n=925	Palivizumab-eligible population 1 st RSV season: infants ≤ 35 wGA 2 nd RSV season: children < 24 months with CLD/CHD	Primary analysis completed

Submission of first registrational dossier planned in Q1 2022

wGA: Weeks gestational age CHD: Congenital heart disease CLD: Chronic lung disease RSV: Respiratory syncytial virus

3 out of 4 hospitalizations prevented with nirsevimab

LRTI: Lower respiratory tract infections RSV: Respiratory syncytial virus (1) Commercial dose Source: Phase III MELODY study, data on file

Nirsevimab safety profile similar to placebo

S	ubjects (%) with ≥ 1 event	Placebo	o (n=491)	Nirsevim	ab (n=987)
A	ny AE	426	(86.8)	863	(87.4)
	AE occurring \leq 1 day postdose ⁽¹⁾	3	(0.6)	18	(1.8)
	AE occurring ≤ 7 days postdose	63	(12.8)	132	(13.4)
	AE related to investigational product	7	(1.4)	10	(1.0)
	AE of ≥ grade 3 severity	21	(4.3)	36	(3.6)
SAE		36	(7.3)	67	(6.8)
	SAE related to investigational product	0	-	0	-
D	eath	0	-	3	(0.3) ⁽⁵⁾
A	ESI ⁽²⁾	0	-	1	(0.1)
S	kin reaction related to investigational product ⁽³⁾	0	-	1	(0.1)
Ν	ew onset chronic disease ⁽⁴⁾	2	(0.4)	4	(0.4)

SANOFI 🎝

AE: Adverse effect SAE: Serious adverse effect AESI: Adverse effect of special interest NOCD: New onset chronic disease

(1) Low incidence of AEs within 1 day of nirsevimab administration, and all AESI are grade 1 in severity and parent-managed with over-the-counter treatments (2) Based on investigator assessment. AESI were hypersensitivity, immune complex disease, and thrombocytopenia (3) Includes skin hypersensitivity reactions - at least one investigated product-related skin reaction (4) At least one NOCD (5) No deaths were considered by the investigator to be related to nirsevimab, and none due to RSV. Two deaths (on days 143 and 338) were attributed to gastroentriis. One death of unknown cause occurred on day 140 in a participant with failure to thrive. Source: Nirsevimab Phase III MELODY study

Ready for global launch, starting with 2023 RSV season

	Designation	Annual birth cohort (m)	Expected submission	Expected launch season	Pre-launch activities
	FDA Breakthrough Therapy designation	3.6	Q4 2022	2023	 NITAGs confirmed interest in All Infant Protection to avoid healthcare inequalities
0	EMA PRIME	4.0	Q1 2022	2023	 Strong support from key medical societies
#	MHRA Promising Innovative Medicine	0.6	Q1 2022	2023	 Real-world implementation study (supporting data for NITAGs decision in 2023)
	AMED High Priority Product	0.8	2023	2024	 Leveraging Sanofi Vaccines go- to-market know-how & existing
	NMPA Breakthrough Therapy designation	12.0	2023 (Phase III initiated)	2024	pediatric franchise

NITAG: National Immunization Technical Advisory Group EMA: European Medical Agency MHRA: Medicines and Healthcare products Regulatory Agency AMED: Japan Agency for Medical Research and Development NMPA: National Medical Products Administration Sources: U.S. CDC National Center for Health Statistics, 2020; EU Eurostat, 2020; Japan National Institute of Population and Social Security Research, 2020; UK office for National Statistics, 39

2020; China National Bureau of Statistics, 2020

First to deliver All Infant Protection

Q&A session | Growing our current business

Thomas Triomphe Head of Vaccines GBU

Bill Averbeck Head of Influenza Franchise

Kimberly Tutwiler Head of RSV Franchise

Thomas Grenier Head of Franchises & Product Strategy

Jon Heinrichs Head of R&D RSV Franchise

Appendix

Immunogenicity alone is not fully predictive of efficacy: cross-trial comparison

			Immunogenicity vs. Standard Dose ⁽¹⁾			Dose ⁽¹⁾	Efficacy aga	inst infection vs. Standard Dose ⁽⁸⁾
	Trial Population	GMT Measu- rement	H1N1		H3	N2		
Vaccine			Candidate	Compara- tor ⁽⁹⁾	Candidate	Compara- tor ⁽⁹⁾	Against AN	Y laboratory-confirmed strains
Fluad (Seqirus) Adjuvanted ⁽²⁾	6-23 months	Day 22	655	224	983	381		31.4% (3.1; 51.4)
Fluad (Seqirus) Adjuvanted ⁽²⁾	2-5 уо	Day 22	1,111	693	1,262	862	×	-15.0% (-40.9; 6.2)
Fluad (Seqirus) Adjuvanted ⁽³⁾	65+ уо	Day 22	99	70	272	169	♦	19.8% (-5.3; 38.9) ⁽⁶⁾
GSK Adjuvanted ⁽⁴⁾	65+ уо	Day 21	89	70	286	172	\bigotimes	12.1% (-3.4; 25.3)
Fluzone High-Dose ⁽⁵⁾	65+ уо	Day 28	116	67	609	333	V	24.4% (9.7; 36.5) ⁽⁷⁾

SD: Standard Dose GMT: Geometric Mean Titers (1) Measured with GMTs (2) Vesikari T, Lancet respi Med, 2018 (3) Frey SE, Reyes MR, Reynales H, et al. Vaccine 2014 (4) McElhaney JE, Beran J, Devaster JM, et al. The Lancet Infectious Diseases. 2013; Ruiz-Palacios GM, Leroux-Roels G, Beran J, et al. Human Vaccines & Immunotherapeutics. 2016 (5) Falsey AR, et al. J Infect Dis. 2009 (6) Beran J, Reynales H, Poder A, et al. The Lancet Infectious Diseases; according to protocol ILI definition; Fluad vs non-influenza comparator (7) DiazGranados CA, Dunning AJ, Kimmel M, et al. N Engl J Med. 2014 (8) Measured with relative vaccine efficacy (9) Standard dose trivalent influenza vaccine comparator

43

Recommending bodies demand Protection Beyond Flu

GRADE is a systematic, transparent way to assess the quality and certainty of clinical evidence

- Based on following factors
 - **Increasing quality**: randomization, large effect size, dose response
 - Decreasing quality: risk of bias, inconsistency, indirectness, imprecision
- Most widely adopted tool, endorsed by >100 organizations worldwide

"Evidence of relative efficacy / effectiveness and safety is better for HD than for the 3 other enhanced vaccines."

	*	
N	IAC	CI

"There is good evidence that Fluzone High-Dose provides superior protection (e.g., decrease in ILI, Influenza-related death and all-cause hospitalization) compared with standarddose TIV in the elderly (Grade A Evidence)."

ACIP

"Overall, high-dose Influenza vaccines may provide better protection against laboratory-confirmed Influenza and proxy outcome measures."

SANOFI 🎝

STIKO: Standing Committee on Vaccination NACI: National Advisory Committee on Immunization ECDC: European Centre for Disease Prevention and Control ACIP: Advisory Committee 44 on Immunization Practices

Fluzone High Dose | Publications

	FIM12	 DiazGranados CA, et al. Efficacy of High-Dose versus Standard-Dose Influenza Vaccine in Older Adults. N Engl J Med. 2014;371(7):635-645 DiazGranados CA, et al. Prevention of serious events in adults 65 years of age or older: A comparison between high-dose and standard-dose inactivated influenza vaccines. Vaccine. 2015;33(38):4988-4993
	FIM 07	 DiazGranados C, et al. High-dose trivalent influenza vaccine compared to standard dose vaccine in elderly adults: Safety, immunogenicity and relative efficacy during the 2009–2010 season. Vaccine. 2013;31(6):861-866
Phase III	FIM05	 Falsey AR, et al. Randomized, Double-Blind Controlled Phase 3 Trial Comparing the Immunogenicity of High-Dose and Standard-Dose Influenza Vaccine in Adults 65 Years of Age and Older. J. Infect. Dis. 2009;200:172-180.
	QHD13	 Chang LJ et al. Safety and immunogenicity of high-dose quadrivalent influenza vaccine in adults ≥65 years of age: A phase 3 randomized clinical trial. Vaccine. 2019 Sep 16;37(39):5825-5834.
	QHD12	 Hollingsworth R, et al. Effectiveness of the quadrivalent high-dose influenza vaccine for prevention of cardiovascular and respiratory events in people aged 65 years and above: Rationale and design of a real-world pragmatic randomized clinical trial. American Heart Journal. 2021; 237:54-61.
	-	 Keitel WA, Atmar RL, Cate TR, et al. Safety of High Doses of Influenza Vaccine and Effect on Antibody Responses in Elderly Persons. Arch Intern Med. 2006;166(10):1121–1127
Phase I	FIM01	 Couch RB et al. Safety and immunogenicity of a high dosage trivalent influenza vaccine among elderly subjects. Vaccine. 2007 Nov 1;25(44):7656-63

Flublok | Publications

Phase III	PSC 12	 Dunkle LM, Izikson R, Patriarca P, et al; PSC12 Study Team. Efficacy of recombinant influenza vaccine in adults 50 years of age or older. N Engl J Med. 2017;376(25):2427-2436
	PSC 4	 Treanor JJ, El Sahly H, King J, et al. Protective efficacy of a trivalent recombinant hemagglutinin protein vaccine (FluBlok[®]) against influenza in healthy adults: a randomized, placebo-controlled trial. Vaccine. 2011; 29(44):7733-7739
	PSC03	 Keitel WA, Treanor JJ, El Sahly HM, et al. Comparative immunogenicity of recombinant influenza hemagglutinin (rHA) and trivalent inactivated vaccine (TIV) among persons ≥65 years old. Vaccine. 2009;28(2):379-385
	PSC06	 Baxter R, Patriarca PA, Ensor K, et al. Evaluation of the safety, reactogenicity and immunogenicity of FluBlok[®] trivalent recombinant baculovirus-expressed hemagglutinin influenza vaccine administered intramuscularly to healthy adults 50-64 years of age. Vaccine. 2011;29(12):2272-2278
	PSC11	 Izikson R, Leffell DJ, Bock SA, et al. Randomized comparison of the safety of Flublok[®] versus licensed inactivated influenza vaccine in healthy, medically stable adults ≥50 years of age. Vaccine. 2015;33(48):6622-6628.
	PSC16	 Dunkle LM, Izikson R, Patriarca PA, et al. Randomized comparison of immunogenicity and safety of quadrivalent recombinant versus inactivated influenza vaccine in healthy adults 18-49 years of age. J Infect Dis. 2017;216(10):1219-1226
Phase I		 DC Powers, et al. Influenza A Virus Vaccines Containing Purified Recombinant H3 Hemagglutinin Are Well Tolerated and Induce Protective Immune Responses in Healthy Adults. J Infect Dis. 1995 Jun;171(6):1595-9
		 Treanor JJ, Schiff GM, Hayden FG, et al. Safety and Immunogenicity of a Baculovirus-Expressed Hemagglutinin Influenza Vaccine: A Randomized Controlled Trial. JAMA. 2007;297(14):1577–1582

SANOFI 🎝

CDC modeling estimated highest reduction of LRTIs with an all infant antibody strategy

ED: Emergency department MA-LRTI: Medically attended lower respiratory tract infection MI: Maternal immunization Sources: Rainisch G et al. Vaccine 2020

Nirsevimab | Publications

Phase IIb	• Griffin M.P. et al. Single-Dose Nirsevimab for Prevention of RSV in Preterm Infants. N Engl J Med 2020; 383:415-425
Ph II/III	 Mankad S.V. et al. Nirsevimab for the prevention of respiratory syncytial virus: safety in infants with congenital heart disease,
MEDLEY	chronic lung disease or prematurity. ResViNET. 2021.
Phase III	 Hammitt L.L. The Efficacy and Impact in Healthy Infants of Nirsevimab on Medically Attended RSV Lower Respiratory Tract
MELODY	Infection. ID Week. 2021
Other	 Rainisch G, Adhikari B, Meltzer MI, Langley G. Estimating the impact of multiple immunization products on medically-attended respiratory syncytial virus (RSV) infections in infants. Vaccine. 2020 Jan 10;38(2):251-257

PPH Primary series set to grow

Sanofi standard of care

Growth potential estimates

2020 global birth cohort (m newborns)

- Hexavalent combo best-in-class protection with >90% effectiveness
- Fully liquid 6-in-1⁽³⁾ vaccine combining bacterial and viral platforms with adjuvant

acP: acellular pertussis Hexa: Hexavalent Penta: Pentavalent Combo: Combination (1) CAGR at CER (2020 FX rates) (2) Hexavalent acP launched in 2013 (3) Diphtheria, Tetanus, Pertussis, Polio, Hemophilus influenzae type b (Hib) and Hepatitis B Sources: WHO; Population estimates, The World Bank; Sanofi internal estimates